#H100 GPU
地球「養不起」輝達GPU
【新智元導讀】地球現在連顯示卡都供不起了,微軟的GPU插不進機房。輝達的H100直接飛向太空。輝達的GPU,地球真的已經「供不起了」!今天看到兩個新聞,一個是微軟手裡囤了無數的GPU,但是「插不進去」。另一個是輝達H100 GPU被發射到太空組建資料中心。這兩個事情其實背後都隱藏著一個深刻問題:GPU是造出來了,但是配套服務於GPU,給GPU供電,給GPU散熱的基礎設施並沒有跟上!先說微軟的GPU放在庫房裡吃灰這件事。微軟CEO納德拉在與OpenAI奧特曼的訪談中爆出驚人事實——微軟手中囤積著大量GPU。卻「沒有足夠電力」讓它們運轉。另一個原因則更為現實,缺少可以立馬「插入GPU」的資料中心。納德拉坦言:我現在的問題不是晶片不夠,而是沒有能插進去的「溫暖機殼」(Warm Shell)。所謂「Warm Shell」指的是具備供電與冷卻條件的資料中心外殼。用一個對比就能快速理解這個概念,建築學上,相對Warm Shell則是Cold Shell。Cold shell指的是建築結構/外殼基本具備,但室內幾乎沒有或只有極少的系統安裝。Warm Shell則是更準備好了的狀態,安裝並可以使用基本的建築系統,比如散熱系統、暖通空調(HVAC)、照明、基本電/水/消防系統等。AI熱潮引發的晶片競賽,如今正受制於最傳統的瓶頸——電力。美國電網面臨前所未有的壓力,而科技巨頭則競相佈局小型核反應堆以自救。與此同時,奧特曼還提到未來可能出現「能在本地運行GPT-5或GPT-6」的低功耗消費裝置,這或將徹底顛覆現有資料中心商業模式。地球養不起,「發配」到太空相比奧特曼提出的低功耗裝置,另一個新聞則提供了新的思路。輝達借助Starcloud的Starcloud-1的衛星,將H100送到太空!11月2日,星期日,輝達首次將H100 GPU送入太空,以測試資料中心在軌道上的運行方式。這款配備80GB記憶體的GPU,比以往任何在太空中飛行的電腦都強大一百倍。支持者認為這一想法很合理:在遠離地球的太空空曠處,資料中心不會佔用寶貴土地,也不需要那麼多能源和水來冷卻,也不會向大氣中排放加劇變暖的溫室氣體。這次為期三年的任務將搭乘SpaceX的Bandwagon 4獵鷹9號(Falcon 9)發射。重量為60公斤的Starcloud-1衛星將在約350公里高度的非常低軌道繞地飛行。在那裡,它將接收由美國公司Capella營運的一隊合成孔徑雷達(SAR)地球觀測衛星傳來的資料,對其進行即時處理,並向地面傳送消息。GPU上天的好處而在太空設立資料中心另一大優勢就是,只需回傳很小部分的資料。下行傳輸合成孔徑雷達(SAR)資料歷來是個大問題,因為資料量極其龐大。但能夠在軌處理就意味著我們只需下行傳輸「洞見」。什麼是洞見?所謂洞見可能是某艘船在某個位置以某個速度朝某個方向航行。那只是一小包約1千字節的資料,而不是需要下傳的數百吉字節原始資料。簡單來說,就是讓演算法貼近資料來源頭,在本地完成篩選、融合與推理,僅把高價值的「資訊摘要」回傳。再簡單點(但不一定精確),就是資料都在外太空處理好,只傳送回來結論。這種方式能更好地實現低時延響應、顯著節省頻寬與能耗、提升韌性(斷聯/災害場景可持續運行),並降低敏感資料外洩風險。為什麼要把GPU送到太空?和微軟CEO納德拉的煩惱不一樣,Starcloud是主動探索這種資料中心模式。就像他們的公司名字一樣,Stra Cloud,太空的資料中心。當然這麼做的主要驅動力不是為了GPU降溫。而是地球能源與資源的瓶頸:地球資料中心太耗能了!到2030年,全球資料中心的耗電量預計將等於整個日本的用電量。同時,它們每天要消耗海量冷卻用水(1 MW 級中心≈1000人日用水量)。相比下來,太空則是有天然優勢。無限太陽能:軌道上 24 小時都有陽光,無需電池儲能。零土地佔用:不需要地面建設,不破壞生態。無溫室氣體排放:不依賴化石能源。歸根到底,還是現在AI的算力需求爆炸。AI模型越做越大(如GPT、Claude、Gemini等),能源和冷卻成本飛漲,企業急需新解法。因此,太空資料中心被視為長期可擴展的解決方案。通過利用低成本、持續不斷的太陽能,並避免佔用土地和使用化石燃料,Starcloud的技術使資料中心能夠快速且可持續地擴展,隨著數字基礎設施的發展,這有助於在保護地球氣候和關鍵自然資源的同時實現增長。那太空能「散熱」嗎?另一個值得一提的就是,很多人覺得GPU上天,是因為地球太熱,太空好散熱。其實不是的。太空能散熱,但很困難。太空幾乎沒有空氣,所以不能用風扇或液體循環帶走熱量(這叫對流散熱)。對流散熱指的是「熱的流體(液體或氣體)移動,把熱量從一個地方帶到另一個地方」的過程。只剩下輻射散熱這一種方式:輻射散熱是「物體通過電磁波/紅外波,把熱量以波的形式發射出去」的過程。裝置通過紅外輻射向外太空釋放熱量。散熱效率取決於輻射面積、材料發射率和溫度。因此衛星或太空GPU需要大面積的散熱板(radiators),設計極其關鍵。在Starcloud的項目中,這部分被特別強化:他們為H100設計了專用熱輻射系統,利用真空中的高溫差和導熱材料實現散熱。為了給地球省電、省地、省水,去太空建資料中心靠譜嗎?Starcloud的首席執行官兼聯合創始人約翰斯頓說:我的預期是,在十年內,幾乎所有新建的資料中心都會建在太空。原因純粹是我們在陸地上面臨的能量限制。約翰斯頓說在太空中唯一的額外成本就是發射費。發射成本在每公斤約(美)500 美元時能夠達到收支平衡。按每千克計算,SpaceX的星艦在完全投入營運後,發射價格估計在150美元到僅10美元不等。隨著星艦的投入使用,我們預計發射成本會更低。Starcloud已經在規劃其下一次任務,計畫明年將一個計算能力比Starcloud-1強十倍的資料中心送入太空。Starcloud-2任務將配備輝達的Blackwell GPU和若干H100。約翰斯頓表示,該任務將提供7千瓦的計算能力,預計為包括地球觀測衛星營運商客戶提供商業服務。微軟的「沒有溫暖機殼」,和Starcloud把H100送上天,本質上是同一道題。AI再厲害,算力需求再大,也不能突破物理定律。 (新智元)
一文帶你詳細瞭解輝達Hopper H100 GPU
輝達H100 GPU,代號Hopper,是NVIDIA於2022年推出的第九代資料中心GPU,專為AI訓練、大模型推理、高性能計算(HPC)場景打造,是A100的直接繼任者。定位關鍵詞:旗艦等級GPU:定位高端,面向大型AI模型訓練與推理。NVLink高速互聯:設計用於超大規模GPU叢集。Transformer專精最佳化:對大模型結構進行硬體等級適配。FP8創新:引領下一代低精度計算標準。應用方向:大語言模型訓練(如GPT-4)AI推理與微調高性能科學計算(HPC)智能推薦系統、金融量化分析等一. H100 GPU的核心技術(1)新架構:Hopper vs AmpereH100基於Hopper架構,採用台積電4nm製程,相較前代A100(Ampere架構,7nm),在能效比、計算密度上提升巨大。(2)Transformer Engine:為大模型“量體裁衣”大語言模型的訓練95%以上的算力集中在Transformer結構上,H100內建的Transformer Engine通過FP8+Tensor Core加速,能夠顯著提升訓練速度。自動選擇精度(FP8/FP16)動態權重縮放,提升數值穩定性性能可比A100快4倍以上(某些任務)(3)NVLink 4.0與NVSwitch:為大模型而生的互聯架構H100支援第四代NVLink互聯,每塊GPU之間頻寬高達900GB/s,通過NVSwitch可建構規模龐大的GPU叢集。應用價值:無需通過PCIe互聯,延遲降低一半支援8~256張H100互聯訓練GPT-4等超大模型(4)多精度計算支援:FP8 引領新標準H100首次引入FP8浮點格式,並保留FP16、BF16、TF32、FP64全端精度,AI訓練推理靈活切換,在保持精度的同時極大提升運算吞吐量。二. H100 GPU詳細規格H100提供兩種型號:H100 SXM和H100 NVL,分別針對不同場景最佳化。以下是詳細規格對比:性能亮點:AI訓練:GPT-3(175B)訓練速度提高4倍。AI推理:最大模型(如Megatron 530B)推理速度提高30倍。HPC應用:3D FFT、基因測序等任務性能提高7倍。浮點性能:60 teraFLOPS FP64,1 petaFLOPS TF32。動態程式設計:DPX指令比A100快7倍,比CPU快40倍。記憶體頻寬:每GPU 3TB/s,系統頻寬高達傳統伺服器的30倍。三. 競品對比與相關產品進行對比:具體分析如下:A100:仍在大量使用,但性價比被H100反超。MI300:高視訊記憶體有優勢,但生態相容性不如NVIDIA。TPU v5:強大但封閉,僅供Google雲自用。H100:依託CUDA生態+強力硬體,仍是主流企業首選。四. 成本和ROI分析1、成本結構(1)直接採購成本NVIDIA H100 GPU的直接採購價格因型號和配置而異。根據市場資料,SXM5型號的單個GPU起價約為195,343 CNY($27,000 USD),NVL型號約為209,354 CNY($29,000 USD)。對於多GPU系統,價格隨數量增加而明顯提升,例如,四個SXM5 GPU的總價約為777,973.6 CNY($108,000 USD),八個GPU可能達到1,555,947.2 CNY(僅GPU成本)。完整的伺服器配置需包括基礎設施,成本通常在1,801,325 CNY至2,882,120 CNY之間,具體涉及InfiniBand網路(每節點約14,411至36,027 CNY,交換機約144,106至720,530 CNY)、電力基礎設施(約72,053至360,265) CNY)、冷卻系統(約108,080至720,530 CNY)和燃油基礎設施(每台發動機約36,027至108,080 CNY)。廠商折扣和定製化同樣影響價格,單GPU價格可能在195,343至288,212 CNY之間波動,尤其是對於企業批次採購。(2)雲租賃成本雲租賃提供了一種消費大額前期投資的靈活選項。2025年,主流雲頂的H100小時GPU租賃價格已顯著下降,範圍從21.58元至71.93元/小時/GPU。根據市場趨勢,2025年雲價格將從2024年的約57.64元/小時降至21.58至25.22元/小時,原因包括市場供應增加、更多資料中心參與和競爭加強。為便於觀察比較,以4個GPU、24小時/天的使用場景為例:按3 USD/小時(約21.62 CNY/小時)計算,每日成本為2,075.13 CNY(4 × 24 × 21.62),每月(30.4天)約63,128 CNY。按最高9.98 USD/小時(約71.93 CNY/小時)計算,每日成本為6,905.28 CNY,月成本約為209,920 CNY。(3)營運成本營運成本是總擁有成本(TCO)的重要組成部分。H100 GPU的功耗高達700瓦/個,這意味著對於大規模部署,電力成本可能相當顯著。例如,4個GPU每天24小時運行,按每千瓦時1元計算,月電力成本約為2,027.52人民幣(700瓦×4×24×30.4÷1000×1)。此外,冷卻系統和網路基礎設施的維護成本也需要撥款,具體金額視設施地區而定。2、投資期回報ROI的核心在於比較採購和雲租賃的長期成本效益。以4個GPU系統為例,假設採購成本為864,636元(包括GPU和基礎伺服器),雲租賃成本按3美元/小時/GPU(約21.62元/小時)計算:每日雲成本:4 × 24 × 21.62 = 2,075.13 CNY;每月雲成本:2,075.13 × 30.4 ≈ 63,128 CNY。投資期返回為:864,636 ÷ 63,128 ≈ 13.7個月,約14個月。這意味著,在14個月後,雲租賃的總成本將超過採購成本,採購開始得出結論。若按上述雲價格(如9.98美元/小時,約71.93人民幣/小時),每日成本為6,905.28人民幣,月成本約209,920人民幣,投資回周期至約4.1個月(864,636 ÷ 209,920 ≈ 4.12),但實際使用中,低價最為常見。五. 面向不同企業的選型建議參考文獻:《NVIDIA H100 Tensor Core GPU》(AI算力那些事兒)
2美元/小時出租H100:GPU泡沫破滅前夜
紅杉資本的報告曾指出,AI產業的年產值超過6000億美元,才夠支付資料中心、加速GPU卡等AI基礎設施費用。而現在一種普遍說法認為,基礎模型訓練的資本支出是“歷史上貶值最快的資產”,但關於GPU基礎設施支出的判定仍未出爐,GPU土豪戰爭仍在進行。尤其是,以OpenAI為代表的大模型公司在訓練+推理上的支出超過了收入,最近他們在有史以來最大的風險投資輪中籌集了66億美元,同時預計2026年的虧損將達到140億美元。 近期,NVIDIA的新一代Blackwell系列晶片交付給了OpenAI,他們還表示接下來一年的產品已經售罄,NVIDIA CEO黃仁勳指出這可能是行業歷史上最成功的產品。與此同時,AMD CEO蘇姿丰推出了MI325X,而AI推理晶片公司Cerebras提交了IPO申請。 隨著數十億美元投入到AI基礎設施層,這會促進AI上層的繁榮還是泡沫?現在,是時候深入探討GPU市場的時候了。 本文作者Eugene Cheah深入研究了H100市場,可能為即將到來的Blackwell晶片的未來走向提供一些參考。他指出,由於預留計算資源的轉售、開放模型的微調以及基礎模型公司的減少,市場上的H100算力已經供過於求,尤其是H100從去年以8美元/小時到現在多家算力轉售商以低於2美元/小時的價格出租。經過深度分析後,他建議使用者在需要時租用而不是購買算力。
2023:一顆被全球瘋搶的晶片
通常最受歡迎的硬體是到處都賣光的手機或遊戲機,但今年似乎科技行業的每個人都願意等待數月並花費大量現金購買您可能永遠不會看到的產品:Nvidia 公司的H100 人工智能加速器。 英偉達(輝達)的晶片可以說已經成為推動人工智慧繁榮的最關鍵技術。H100 擁有800 億個電晶體,是訓練支援OpenAI 的ChatGPT 等應用程式的大型語言模型的首選主力,並幫助Nvidia 主導了AI 晶片市場。 但由於對H100 的渴望如此強烈,而且競爭對手Advanced Micro Devices Inc. 和英特爾公司在生產性能相當的晶片方面進展緩慢,這種依賴迫使大型科技公司在2023 年在處理器軍備競賽中花費越來越多的資金。目前,硬體供應商CDW 的線上商店中一台H100 的售價為57,000 美元,而他們的資料中心內則堆滿了數千台H100。 當Nvidia 執行長黃仁勳(Jensen Huang) 於2016 年向OpenAI 交付該公司第一台配備老一代圖形處理單元的AI 伺服器時,很少有人能預測到此類晶片將在即將到來的由ChatGPT 引發的革命中發揮作用。當時,英偉達的顯示卡是電玩遊戲的代名詞,而不是機器學習的代名詞。但黃仁勳很早就認識到,與英特爾等公司的傳統電腦處理器相比,他們獨特的架構擅長所謂的平行運算,更適合處理人工智慧模型所需的大規模同步資料處理。